Casalnuovo Matematica <> Cucina contatti home page  
 
Unità di misura antiche, vecchie e regionali
Storia della Matematica e geometria
   Problemi degli esami di stato

Pagina Iniziale
Qualche quesito di Matematica
Università Federico II Napoli: Matematica
Università Bocconi di Milano: Matematica
Università Statale di Milano: Matematica
Unione Matematica Italiana
Mathesis Nazionale
Ministero Istruziome: Miur



 




   ESAMI DI STATO

LICEO SCIENTIFICO

PROVE DI MATEMATICA

SESSIONE SUPPLETIVA

P N I    2003     --    T E S T I



  PROBLEMA 1

  In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le parabole di equazione:
y = (a- 1) x2 - 2 a x + a2 ,

dove a è un parametro reale diverso da 1.
  1. Determinare quali tra esse hanno punti in comune con l'asse x e quali no.
  2. Trovare le due parabole che hanno il vertice in un punto di ascissa a.
  3. Stabilire se le due parabole trovate sono congruenti o no, fornendo un'esauriente spiegazione della risposta.
  4. Scrivere l'equazione del luogo geometrico L dei vertici delle parabole assegnate e disegnarne l'andamento dopo averne determinato in particolare asintoti, estremi e flessi.
  5. Calcolare l'area della regione finita di piano delimitata dalla curva L e dalla retta di equazione y = 3/2


   PROBLEMA 2

  In un trapezio rettangolo ABCD, circoscritto ad un cerchio, AB è la base maggiore, C D la minore e BC il lato obliquo. Le misure, considerate rispetto alla stessa unità di misura, del raggio del cerchio e del perimetro del trapezio sono nell' ordine 2 e 18.
  1. Calcolare le misure dei lati del trapezio.
  2. Riferito il piano della figura ad un conveniente sistema di assi cartesiani (Oxy), scrivere le coordinate dei vertici del trapezio.
  3. Tra le centro-affinità di equazioni:
    x' = a x+ b y , y' = c x+ d y ,
    trovare quella che trasforma il vertice B del trapezio nel vertice C e il vertice C nel vertice D
  4. Stabilire se la centro-affinità trovata presenta rette unite.
  5. Calcolare l'area della figura trasformata del cerchio inscritto nel trapezio in base alla centro- affìnità trovata sopra.


QUESTIONARIO
  1. Nota la lunghezza .di una corda di un cerchio di dato raggio, calcolare quella della corda sottesa dall'angolo al centro uguale alla metà di quello che sottende la corda data.
       [Nota -La risoluzione del problema è stata usata da Tolomeo, II sec. d C., per la costruzione di una tavola trigonometrica in maniera equivalente alla nostra formula di bisezione del seno.]

  2. Nello spazio ordinario sono dati due piani    ,     ed una retta r. Si sa che r è parallela ad     e perpendicolare a    . Cosa si può concludere circa la posizione reciproca di     e      ? Fornire un'esauriente spiegazione della risposta.

  3. Il dominio della funzione       è l'insieme degli x reali tali che:

    Una sola risposta è corretta: individuarla e fornire un'esauriente spiegazione della scelta operata.


  4. Si consideri un polinomio di grado n 2 nella variabile reale x con coefficienti reali. Dimostrare che condizione necessaria e sufficiente affinché esso ammetta due zeri uguali al numero reale a è che il valore del polinomio e quello della sua derivata prima si annullino per x = a .

  5. Stabilire se esistono i limiti della funzione      per:
    e, in caso di risposta affermativa, determinarli.

  6. Si consideri il seguente sistema di equazioni nelle incognite x, y, z

    dove k è un parametro reale.
    Dire se l'affermazione: "il sistema ammette la sola soluzione x=0, y=0, z=0 per ogni valore di k diverso da 1 " è vera o falsa e fornire una spiegazione esauriente della risposta.

  7. Utilizzando il procedimento preferito, dimostrare la formula che fornisce l' area della regione piana racchiusa da un' ellisse di semiassi noti.

  8. In un piano riferito ad un sistema di assi cartesiani ortogonali (Oxy) , sono date le affinità di equazioni:
    x'=(a+l)x - by + a ,      y'=(a-l)x + 2by - l,

    dove a, b sono parametri reali.
    Dimostrare che fra esse vi è una similitudine diretta e di questa trovare il punto unito.

  9. Un'urna contiene 30 palline uguali in tutto e per tutto fuorché nel colore: infatti 18 sono bianche e 12 nere. Vengono estratte a caso, una dopo l'altra, due palline. Qual è la probabilità che la seconda pallina estratta sia bianca sapendo che la prima:
    1. è bianca e viene rimessa nell'urna?
    2. è bianca e non viene rimessa nell'urna?
    3. è messa da parte senza guardarne il colore?


  10. Considerata l'equazione in x:

    dove a, b, c sono numeri reali qualsiasi, con a 0, scrivere un algoritmo che ne determini le soluzioni reali e le comunichi, esaminando tutti i casi possibili.


Tutti i logo e marchi contenuti in questo sito sono dei rispettivi proprietari. © 2004 Pelliccia Vincenzo